CDC group IV c-2: a new Ralstonia species close to Ralstonia eutropha.
نویسندگان
چکیده
CDC group IV c-2, an environmental gram-negative bacillus recently proposed for inclusion in the genus Ralstonia, has been isolated in several human infections. Biochemical characterization and 16S ribosomal DNA (rDNA) sequencing with phylogenetic analysis were used to characterize eight clinical isolates and four type strains. Other typing tools, such as pulsed-field gel electrophoresis (PFGE) and randomly amplified polymorphic DNA (RAPD) analysis, were also used. PFGE typing of clinical isolates was unsuccessful because the DNA was degraded, and RAPD analysis was poorly discriminatory. In contrast, the type strains were clearly distinguished with both PFGE and RAPD analysis. All of the 16S rDNA sequences were identical. Comparison of the 16S rDNA sequences to the GenBank sequences showed that they were consistent with CDC group IV c-2 belonging to the genus Ralstonia. The closest matches were obtained with Ralstonia eutropha. However, four differences in 32 biochemical tests separated R. eutropha from CDC group IV c-2, which suggests that CDC group IV c-2 is a new species of the genus Ralstonia.
منابع مشابه
Phenotypic and genotypic characterization of clinical strains of CDC group IVc-2.
CDC group IVc-2 is a gram-negative, oxidase-positive, nonfermentative bacillus that has been implicated in human infections, including septicemia and peritonitis. Biochemically it most closely resembles Bordetella bronchiseptica and Alcaligenes sp. Results of cellular fatty acid (CFA) and 16S rRNA gene analysis were combined with biochemical data to assist in identification and classification. ...
متن کاملStaphyloferrin B, a Citrate Siderophore of Ralstonia eutropha*
Maik Münzinger, Kambiz Taraz and Herbert Budzikiewicz* Institut für Organische Chemie der Universität zu Köln, Greinstr. 4, D-50939 Köln, Germany. Fax: + 4 9 -2 21 -470 -5057 . E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 54c, 867-875 (1999); received July 8, 1999 Ralstonia eutropha, Iron Transport, Siderophore, Staphyloferrin B The struct...
متن کاملApplication of the Taguchi Design for Production of Poly(β-hydroxybutyrate) by Ralstonia eutropha
The Taguchi design of experiments was used to test the relative importance of medium components and environmental factors on poly(β-hydroxybutyrate)(PHB) production by Ralstonia eutropha. The optimum condition was obtained as: fructose concentration, 15 g/L; C/N ratio, 7.4; agitation speed 200 rpm; culture time, 40 h; temperature, 25 ° C; seed age, 15 h. At optimu...
متن کاملLow temperature-induced viable but not culturable state of Ralstonia eutropha and its relationship to accumulated polyhydroxybutyrate
The culturability of Escherichia coli, Ralstonia eutropha and Bacillus subtilis after incubation in phosphate-buffered saline at either 5°C or 30°C was determined. The culturability of B. subtilis showed little dependence on temperature. The culturability of E. coli rapidly decreased at 30°C but remained almost constant at 5°C. In contrast, the culturability of R. eutropha decreased by three or...
متن کاملInfluence of Matric Potential on Survival and Activity of Genetically Engineered Ralstonia eutropha H850Lr
Although the application of biodegradative genetically engineered micro organisms (GEMs) for bioremediation is very promising, the risks of their release should be assessed before their introduction into the environment. Lux-marked Ralstonia eutropha H850Lr (formerly Alcaligenes eutrophus H850Lr) was introduced into sterile and non-sterile soil microcosms at matric potentials ?2.11, ?30, ?750, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of clinical microbiology
دوره 37 6 شماره
صفحات -
تاریخ انتشار 1999